Hydrophobic, hydrophilic, and charged amino acid networks within protein.
نویسندگان
چکیده
The native three-dimensional structure of a single protein is determined by the physicochemical nature of its constituent amino acids. The 20 different types of amino acids, depending on their physicochemical properties, can be grouped into three major classes: hydrophobic, hydrophilic, and charged. The anatomy of the weighted and unweighted networks of hydrophobic, hydrophilic, and charged residues separately for a large number of proteins were studied. Results showed that the average degree of the hydrophobic networks has a significantly larger value than that of hydrophilic and charged networks. The average degree of the hydrophilic networks is slightly higher than that of the charged networks. The average strength of the nodes of hydrophobic networks is nearly equal to that of the charged network, whereas that of hydrophilic networks has a smaller value than that of hydrophobic and charged networks. The average strength for each of the three types of networks varies with its degree. The average strength of a node in a charged network increases more sharply than that of the hydrophobic and hydrophilic networks. Each of the three types of networks exhibits the "small-world" property. Our results further indicate that the all-amino-acids networks and hydrophobic networks are of assortative type. Although most of the hydrophilic and charged networks are of the assortative type, few others have the characteristics of disassortative mixing of the nodes. We have further observed that all-amino-acids networks and hydrophobic networks bear the signature of hierarchy, whereas the hydrophilic and charged networks do not have any hierarchical signature.
منابع مشابه
Protein contact networks at different length scales and role of hydrophobic, hydrophilic and charged residues in protein's structural organisation
acids in primary chain, the contact networks are constructed based on the 3D spatial distances of amino acids. We have further divided these networks into sub-networks of hydrophobic, hydrophilic and charged residues. Our analysis reveals that a significantly higher percentage of assortative sub-clusters of long-range hydrophobic networks helps a protein in communicating the necessary informati...
متن کاملNPPD: A Protein-Protein Docking Scoring Function Based on Dyadic Differences in Networks of Hydrophobic and Hydrophilic Amino Acid Residues
Protein-protein docking (PPD) predictions usually rely on the use of a scoring function to rank docking models generated by exhaustive sampling. To rank good models higher than bad ones, a large number of scoring functions have been developed and evaluated, but the methods used for the computation of PPD predictions remain largely unsatisfactory. Here, we report a network-based PPD scoring func...
متن کاملThe Effect of Hydrophobicity and Hydrophilicity of Gold Nanoparticle on Proteins Structure and Function
The surface parameter of nanoparticles such as hydrophobicity and a hydrophilicity on protein structure and function is very important. In this study, conformational changes of glucose oxidase (GOx) in the mercaptopurine: GNPs and 11-mercaptoundecanoic acid: GNPs as a hydrophobic and a hydrophilic GNPs surface was investigated by various spectroscopic techniques, including: UV-Vis absorption, f...
متن کاملThe Effect of Hydrophobicity and Hydrophilicity of Gold Nanoparticle on Proteins Structure and Function
The surface parameter of nanoparticles such as hydrophobicity and a hydrophilicity on protein structure and function is very important. In this study, conformational changes of glucose oxidase (GOx) in the mercaptopurine: GNPs and 11-mercaptoundecanoic acid: GNPs as a hydrophobic and a hydrophilic GNPs surface was investigated by various spectroscopic techniques, including: UV-Vis absorption, f...
متن کاملFrequencies of amino acid strings in globular protein sequences indicate suppression of blocks of consecutive hydrophobic residues.
Patterns of hydrophobic and hydrophilic residues play a major role in protein folding and function. Long, predominantly hydrophobic strings of 20-22 amino acids each are associated with transmembrane helices and have been used to identify such sequences. Much less attention has been paid to hydrophobic sequences within globular proteins. In prior work on computer simulations of the competition ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 93 1 شماره
صفحات -
تاریخ انتشار 2007